アジア諸国の外国為替レートの変動を読む

栗 林 純 夫 平 井 貴 幸

はじめに:

原油安、証券市場の混乱、そして日・欧の中央銀行によるマイナス金利の導入など、世界 経済の不透明感が増大している。

本稿では、そうした不鮮明項目の中から、「外国為替レート」の問題を取り上げ、これが、 アジア主要諸国において、どのように変動しているか、その概要を示すことにしたい。

もちろん、こうした問題意識の背景には、我々のモンゴルに対する関心があり、「この国 の為替レートの変動が、アジア諸国のそれに比して、どの程度、類似しているか」、これに 対する理解を深めることも、本稿の目的となる。

1. 為替レートとは、両替率のこと

「外国為替レート」という表現は、必要以上に、「難解」という印象を与える傾向があるように思われる。「為替」というものは、人間、ある程度、大きくなってからしか使わないものである。つまり馴染みのない言葉なのである。まして、それに「外国」などという文字が付き、さらに「レート」などという外来語が付くと、「できれば、関わりたくない」という感情が、自然に湧くというものである。

これは、「自国通貨を外国通貨に替える」、あるいは「その逆」という「行動」があるとき、 そこで成立する両者の比率、つまり「両替率」のことである。この「両替率」という言葉を 使うと、拒否反応は、幾分、和らぐのではないだろうか。ともかく、以下で、「外国為替レート」、あるいは短く「為替レート」という言葉が出たときには、「ああ、両替率のことだな」 と思って、読み進めていただきたい。また、以下では、概念を示す「式」が少し出てくるが、 単純な、掛け算、割り算なので、心配には及ばない。

2. 「為替レートは、どう決まるか」という疑問

例えば、一万円を米ドルに換えるとき、手数料を除けば、日々変動する両替率表、つまり 為替レート表というものがあって、これを基準に、何ドルというように、交換される。日々 変動すると書いたが、実際は、瞬間・瞬間、変動している。それは、専門の外国為替取引を 行う当事者たち、簡単に言えば「両替商たち」が取引する市場があり、そこで、円のドルに 対する両替率、また同じことであるが、ドルに対する円の両替率というものが、決定されているのである。

では、その市場で、「為替レートは、どのようにして決まるのか」と問うならば、経済学の回答は、まことに冷淡なもので、「ドルに対する需要と、円に対する需要、この二つの大きさの関係で決まる」などというものになる。

「もっと具体的に、明解に答えてほしい」と、言いたいのが人情であろう。しかし、「こう決まる」ということが、絶対的に明らかであるとすると、逆に「公平な取引」を行うことは困難になってしまうという現実がある。「市場」とは、そもそも、様々な思惑を持った人々の間で、「公平な取引」が、なされるべき場なのであり、先験的に明確な回答、とくに一部の人々のみが有するそれが、あってはならないのである。

3. 絶対購買力平価説の考え方

「為替レート=両替率」と述べたが、これは「通貨」、つまり「貨幣」という観点ではなく、 むしろ「商品」で考えた方が、理解は早いかもしれない。

例えば、日本と米国で、全く同じタイプの自動車、ここではトヨタの「レクサス」があったとする。「まったく同じ」というのは、普通、あり得ないが、これは話を簡単にするための「方便」であると判断されたい¹。

その値段が、日本では500万円で、米国では、37,500ドルであったとする。これは、同じ商品なので、500万円と37,500ドルを等号、つまり「=」を使って書きたいのであるが、よく見ると、円とドルというように単位が異なるので、等号が成立するためには、面倒ではあるが、次の表現が必要になる。

$$500$$
 万円= $\left[\frac{500$ 万円}{37,500ドル}\right] × 37,500ドル

上の[]が、この場合の為替レート、つまり両替率というものである。これを計算すると、約133円/ドルとなる。つまりこのケースでは、133円が1ドルと交換される「はずである」ということである。

このようにして、求められるものを、「絶対購買力平価説による、理論上の為替レート」と呼ぶ。同じ商品を購入するということは、二つは「等価値」ということであり、これを「平価」と表現しているのである。もっとも「絶対」という言葉が付くのは、「相対」という言葉との関係からなのであるが、その説明は、少し後にしよう。

¹ 本当は、両国ともに、この商品と、これに関連する他の商品などに関して、貿易がない場合などの、難しい要件も必要となるのであるが、かえって話が混乱するので、ここでは大雑把な理解でよいとしよう。

4. 絶対購買力平価の精度を上げる

上の説明は、二つの国で、同じ商品を一種のみ、選んだものであったが、これで、いきなり、 「為替レートは、必ず133円/1ドルになる」と結論するのも、危険であろう。

そこで、もう一種、別の自動車について考えてみよう。日本と米国で、全く同じタイプの自動車、今度はホンダの「アコード」があったとする。その値段は、日本では380万円、米国では30,000ドルとすると、以下の表現を得る。

380万円=
$$\left[\frac{380万円}{30,000ドル}\right]$$
×30,000ドル

このとき、[] の為替レートは、約127円/1ドルになり、これはレクサスの時のそれとは、 微妙に異なる。

そうすると、「レクサス」のケースと、「アコード」のケースの、「どちらを取るべきか」ということになるのであるが、通常は、各々がレクサス一台とアコード一台、つまり合計二台ずつ買ったとして、次のように表現すれば、「少し現実的なのではないか」という智慧が湧く。

880万円=
$$\left[\frac{880万円}{67,500$$
ドル $\right]$ × 67,500ドル

そうすると、[] の為替レート、つまり両替率は、約130円/1ドルになる 2 。

このようにして両国で同じ商品の数を増やしていき、「この辺りでよいだろう」と、商品 構成を規則で定めて、その合計値をもとに計算されたものが、前述の「絶対購買力平価説 による、理論上の為替レート」なのである。

5. 現実の為替レートを、相対購買力平価説で説明する

ところで、「現実」の為替レートと、前述の「理論上」のそれとの間には、乖離があるのが 普通である。「なぜ、そうなのか」と考え、「両者には、長期的に(瞬間・瞬間にではなく)一 定の関係があるのではないか」と問題提起をして、この二つを結び付けようとした人々の 試みの一つが、「相対購買力平価説」と呼ばれるものである。

前述の絶対購買力平価説による「理論上のレート」をZとする。また、「現実の為替レート」をEとする。ここで、ある比例定数 γ (ガンマと読む)があり、 $Z=\gamma$ ・Eという関係を想定するのである。この γ とEとの間の・は、 \times (かける)という意味である³。

前述の、同じ商品群の両国における価格の合計をA円、Bドル、両替率の[]をZとすると、以下のように書き換えることができる。

² レクサスとアコードの事例については、附表1を参照。

³ 実は、yも変化するので、定数とはいい難い面もあるが、ここでは単純に議論している。

 $A = Z \cdot B$ ドル $\rightarrow A = \gamma \cdot E \cdot B$ ドル

さらに、これらが「本年」と「次年」では変化するとして、本年 e^{-t} で示すと、以下の二つの表現を得る。

本年: A_0 円 = $\gamma \cdot E_0 \cdot B_0$ ドル

翌年: A_t 円= $\gamma \cdot E_t \cdot B_t$ ドル

面白いのは、翌年の式を本年の式で割ると、次のようにγが消えてしまうことである。

$$A_t \mid A_o = \frac{E_t \cdot B_t}{E_o \cdot B_o} = \frac{E_t \mid E_o}{B_o \mid B_t}$$

ここで、例えば、 A_c/A_o は、10/5=2/1というように、分母が1であるときに、分子がどのような値になるのかを示すものである。つまり本年の物価を1としたときに、次年の物価がどのような値になるかを示すものであるので、これを「物価の拡大率」と呼ぶことにしよう。つまり、上の式の意味は、以下のようになる。

この式の[]は、両国の「相対物価拡大率」と呼んでもよいものである。

もう少し考えてみよう。「物価指数」という概念がある。これは「本年の物価水準を100としたときに、次年の物価水準はどうなるか」、などという時に登場するものである。ここで、日本の翌年の物価指数が105で、米国のそれが102であったとする。そこで各々の拡大率を求めて、上の式の[]、つまり「相対物価拡大率」を求めると、(105/100)/(102/100)になり、左右の100は消えるので、105/102 = 約1.029になる。少しくどいようであるが、本年の物価指数は、両国ともに、100としていることに注意されたい。

$$E_t = E_o \times \left[\frac{次年の日本の物価指数}{次年の米国の物価指数} \right]$$

この表現の興味深い点は、購買力平価説による理論上の為替レートの問題を扱っていたにも関わらず、結論は、「現実の為替レートが、どう変化するかを示す式を、手に入れることになった」ということである。本年の為替レートが E_o であること、そして次年の両国の物価指数がどうなるかがわかっていれば、「次年の為替レートは、こうなるはずである」ということが示されているのである。

6. 実際に計算してみよう

上の式が、どれほど現実の両替率を説明できるのか、これを実際に計算して、確かめることにしよう。東アジア諸国の「現実レート」と、上の「理論レート」を求めた結果を、図1から図12として示す。これは、「基準年」を2011年とし、現実レートと理論レートを100と

して示したものであり、その根拠となった計算結果の本来の値は、附表に示されている。

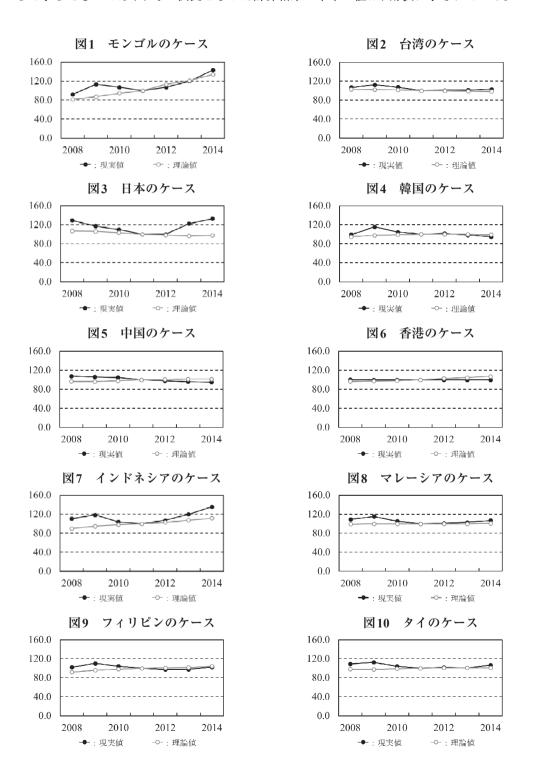


図11 シンガポールのケース

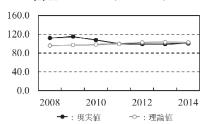
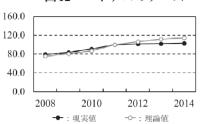



図12 ベトナムのケース

ともかく、図1から図12を見ると、これまで説明してきたことが、「当たらずとも、遠からず」という印象を受けるのではなかろうか。ただ、例えば、台湾のケースでは、現実値と理論値がほぼ合致しているが、「モンゴルのそれでは、少し乖離幅が大きい」という印象も受ける。そこで、この乖離の大きさを、相対的に比較するために、次のような計算をしてみよう。

毎年の現実値を100として基準化し、理論値の値を指数で示す。

そして、この二つの差 (前者 - 後者の値) を2乗して、毎年のその値の「総和」を求める。 2乗するのは、現実値<理論値の場合でも、現実値>理論値でも、ともかく乖離が生じたということでは同じなので、「両方を加味する」ためという、統計学でよく使われる手法を用いているのである。

さらに、差の2乗和をルートで開く、つまり何を2乗したのかを求め、さらにこれを期間数(対象となった年数:7年)で割る。これを「理論値の適合性指標」と呼ぶことにしよう。表1は、この指標を、台湾のケースを100として指数化して示したものである。モンゴルの値は241で、台湾のそれより乖離が大きい。しかし、それでも、インドネシア、日本よりも適合しているといえそうである。

表1 現実レートと理論レートの乖離(台湾=100)

1		香	港	85.5	5	中		145.9				
2)	台	湾	100.0	6	マレ	ーシア	147.2	10	モン	ゴル	241.4
3	,	ベト	ナム	140.5	7	タ	イ	149.5	11 -	インド	ネシア	284.5
4	-	韓	国	143.1	8	フィ	リピン	149.5	12	日	本	324.4

おわりに:

最後に、これまでの議論を整理しておこう。本年の為替レートがであり、相対物価拡大率がプラスであった場合とは、「自国の物価の拡大率が、米国のそれよりも大きかった」ということであり、この場合には、次年の理論レートE,は、増大する。これは、X円/1ドルと

いう表記であったので、円の価値が下がったことを意味している。

日本では、安倍政権が、インフレ率、つまり物価上昇率をプラスにして、「デフレ脱却を狙う」という政策がとられている。そして、欧米諸国からは、「日本は『円安誘導』を行っているのではないか」と批判され、日本は「そうではなく、あくまでも、『デフレ脱却』が目標である」と反論しているが、相対購買力平価説の観点からは、「インフレ誘導」も、「円安誘導」も、実は同じ意味なのである。

ただ、問題は、「どうすれば、物価を上げることができるか」にあり、これには、複雑な議論が求められる。この点については、また稿を改めて考えることにしたい。

(くりばやし・すみお:東京国際大学大学院経済学研究科教授) (ひらい・たかゆき:同大学国際交流研究所研究員)

参考資料・参照WEBページ

- [1] Asian Development Bank (2015) Key Indicators for Asia and the Pacific 2015.
- [2] World Bank (2015) World Development Indicators.
- [3] WEBページ「HONDA Accord Hybrid」<日本版http://www.honda.co.jp/ACCORD/, 米国版http://automobiles.honda.com/accord-hybrid/> (2016.2.1 アクセス).
- [4] WEBページ「LEXUS IS」<日本版http://lexus.jp/models/is/index.html, 米国版http://www.lexus.com/models/IS>(2016.2.1アクセス).

附録

附表1 LEXUSとAccord Hybridの日米価格

車 名	日本価格	米国価格	日本価格 米国価格	為替 レート*
1 LEXUS IS	500万円	37,500ドル		
2 HONDA Accord Hybrid	375万円	30,000ドル	125.00	120.97
1+2 (LEXUS & Accord)	875万円	67,500ドル	129.63	

^{*2016}年2月1日の円ドル為替レートの終値。

附表2 国·地域別消費者物価指数(2011年=100)

	モンゴル	日本	韓国	台湾	中国	香港	インドネシア	マレーシア	フィリピン	タイ	シンガポール	ベトナム	米国
2008	78.3	102.3	90.9	98.5	92.5	92.5	86.4	94.9	88.0	93.9	92.1	72.1	95.8
2009	83.3	101.3	93.4	97.7	91.9	93.0	90.6	95.4	91.7	93.1	92.7	77.2	95.5
2010	91.7	100.3	96.2	98.6	94.9	95.2	95.2	97.1	95.2	96.2	95.2	84.0	97.1
2011	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2012	115.6	100.0	101.9	101.9	102.6	104.8	104.8	101.9	102.9	102.9	104.8	108.4	101.9
2013	125.7	100.3	103.8	102.7	105.3	108.6	111.4	103.9	105.7	104.8	107.6	116.0	103.9
2014	142.2	103.3	104.8	104.0	107.4	113.3	118.1	106.8	110.5	106.7	108.6	121.0	105.8

出所: ADB (2015) およびWorld Bank (2015) より作成。

附表3 対米ドル為替レート指数 (現実値, 2011年 = 100)

	モンゴル	日本	韓国	台湾	中国	香港	インドネシア	マレーシア	フィリピン	タイ	シンガポール	ベトナム
2008	92.1	129.1	99.1	107.0	107.6	100.1	110.6	109.2	102.3	109.2	111.9	79.5
2009	113.4	117.3	115.3	112.2	105.7	99.6	118.6	115.0	110.2	112.5	115.1	83.4
2010	107.1	110.0	104.5	107.4	104.8	99.9	103.6	105.2	104.2	103.9	107.9	90.7
2011	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2012	107.1	100.0	101.8	100.5	97.7	99.7	107.1	101.0	97.5	102.0	99.2	101.5
2013	119.7	122.3	98.2	101.0	96.0	99.7	119.7	102.9	97.9	100.7	99.2	102.0
2014	143.3	132.8	94.6	103.1	95.0	99.6	135.7	106.9	102.5	106.6	100.8	102.9

出所: 附表2に同じ。

附表4 理論レート (理論値, 2011年=100)

	モンゴル	日本	韓国	台湾	中国	香港	インドネシア	マレーシア	フィリピン	タイ	シンガポール	ベトナム
2008	81.8	106.8	94.8	102.8	96.5	96.5	90.1	99.0	91.8	98.0	96.1	75.2
2009	87.2	106.0	97.7	102.2	96.2	97.4	94.8	99.9	96.0	97.4	97.0	80.8
2010	94.5	103.3	99.0	101.6	97.7	98.1	98.1	100.0	98.1	99.0	98.1	86.6
2011	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2012	113.4	98.1	100.0	100.0	100.6	102.8	102.8	100.0	100.9	100.9	102.8	106.3
2013	121.0	96.6	100.0	98.9	101.3	104.5	107.3	100.0	101.8	100.9	103.6	111.6
2014	134.4	97.6	99.0	98.2	101.5	107.1	111.6	100.9	104.4	100.9	102.6	114.3

出所: 附表2に同じ。

附表5 各年の現実値を100として基準化した理論値

	モンゴル	日本	韓国	台湾	中国	香港	インドネシア	マレーシア	フィリピン	タイ	シンガポール	ベトナム
2008	88.8	82.7	95.7	96.1	89.7	96.4	81.5	90.7	89.8	89.8	85.9	94.6
2009	76.9	90.4	84.8	91.1	90.9	97.8	79.9	86.8	87.1	86.6	84.3	96.9
2010	88.2	93.9	94.8	94.6	93.3	98.2	94.6	95.0	94.2	95.3	90.9	95.4
2011	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2012	105.9	98.1	98.2	99.5	103.0	103.0	96.0	99.0	103.5	99.0	103.6	104.8
2013	101.1	78.9	101.8	97.9	105.6	104.8	89.6	97.1	103.9	100.2	104.4	109.5
2014	93.8	73.5	104.7	95.3	106.8	107.5	82.2	94.4	101.8	94.6	101.8	111.1

出所: 附表3および附表4より作成。

附表6 各年の現実値と基準化された理論値との乖離(附表3と附表5の差)

	モンゴル	日本	韓国	台湾	中国	香港	インドネシア	マレーシア	フィリピン	タイ	シンガポール	ベトナム
2008	11.2	17.3	4.3	3.9	10.3	3.6	18.5	9.3	10.2	10.2	14.1	5.4
2009	23.1	9.6	15.2	8.9	9.1	2.2	20.1	13.2	12.9	13.4	15.7	3.1
2010	11.8	6.1	5.2	5.4	6.7	1.8	5.4	5.0	5.8	4.7	9.1	4.6
2011	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2012	-5.9	1.9	1.8	0.5	-3.0	-3.0	4.0	1.0	-3.5	1.0	-3.6	-4.8
2013	-1.1	21.1	-1.8	2.1	-5.6	-4.8	10.4	2.9	-3.9	-0.2	-4.4	-9.5
2014	6.2	26.5	-4.7	4.7	-6.8	-7.5	17.8	5.6	-1.8	5.4	-1.8	-11.1

出所: 附表3および附表5より作成。

附表7 乖離の2乗(附表6の2乗)

	モンゴル	日本	韓国	台湾	中国	香港	インドネシア	マレーシア	フィリピン	タイ	シンガポール	ベトナム
2008	126.6	298.7	18.6	15.2	105.3	13.1	342.2	86.7	104.8	104.2	199.3	28.8
2009	533.5	92.1	232.6	78.6	82.0	5.0	402.1	173.1	165.2	178.6	246.9	9.5
2010	138.2	37.2	27.4	29.5	45.5	3.2	28.7	24.7	33.9	22.2	83.1	21.2
2011	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2012	34.7	3.6	3.2	0.3	9.2	9.2	16.2	0.9	12.4	1.0	12.9	23.1
2013	1.2	443.4	3.2	4.5	31.2	22.9	108.4	8.2	15.4	0.1	19.6	90.1
2014	38.9	702.6	22.1	21.9	45.7	56.4	315.3	31.0	3.3	28.6	3.2	123.1
1	873.0	1577.7	307.0	149.9	319.0	109.7	1212.9	324.5	335.0	334.8	564.9	295.9
2	29.5	39.7	17.5	12.2	17.9	10.5	34.8	18.0	18.3	18.3	23.8	17.2
3	4.2	5.7	2.5	1.7	2.6	1.5	5.0	2.6	2.6	2.6	3.4	2.5

出所: 附表6より作成。

注: ①は2008年から14年までの合計値、②はその平方根、そして③はそれを期間 (7年) で割った値を表す。